

université

Nuclear astrophysics at laser facilities

CELIA Centre for laser physics & applications, U. Bordeaux & IRFU/SAp, Astrophysics Division, CEA-Saclay

PNPS workshop Lyon, E.N.S., November 15 - 16, 2016

www.idex-univ-bordeaux.fr - petal.aquitaine.fr irfu.cea.fr - celia.u-bordeaux.fr

université

Nuclear physics with lasers

CELI

- Two tracks for reactivity/low-energy fusion probability measurements
 - Fusion reactions at femtosecond (fs) high-power lasers
 - Reacting species accelerated in the laser absorption mechanism
 - Determination of fusion probability corresponding to a certain energy spectrum
 - Large facilities with nanosecond (ns) lasers
 - Plasma reaching high temperature & density, species reacting inside the plasma
 - Reactivity/fusion probability determined corresponding to the Gamow window of the laser plasma
 - Going-on program at NIF

université

fs laser - nano-object interaction

- Measurements of S factors or nuclear rates
- Principle of the experiment
 - Atom cluster through supersonic gas expansion (nozzle)
 - A few 10 fs laser pulse, focal spot ~ 10 µm diameter
 I ~ 10¹⁸ – 10²⁰ W/cm²
 - High-efficiency laser energy absorption in the clusters
 → Coulomb explosion mechanism
 - 1 10 Hz repetition rate

21

CELIA

S. Ter-Avetisyan et al., Applied Phys. Lett. **99**, 051501 (2011)

Calculation by François Bayard (CPE/C2P2, Univ. Claude Bernard, Lyon)

université

- ↘ Atomic clusters
 - Clusterisation in the supersonic expansion of a high-P gas
 - Average size $\leftarrow \rightarrow$ gas pressure

Nano-objects

- Φ a few nm to a few 10 nm, homogeneous, ho(liquid)
- Nano-droplets
 - From the supersonic expansion of a liquid of a spray
 - Φ ~ 200 300 nm, homogeneous, ρ (liquid)
- Sub-micron molecules
 - From chemistry
 - Φ ~ a few 100 nm
 - Homogeneous, chemistry can enrich the surface

de **BORDEAUX**

université

Some orders of magnitude

- Electron response time in the laser high-electric field
 - ~ 20 fs \rightarrow thermalisation
- Coulomb explosion time
 - A few 10 ps (ion acceleration)
- Relaxation ion/electron
 - Electron ion collision frequency: ~ a few 10/fs
 - Fully out-of-equilibrium plasma → description with kinetics equation, molecular dynamics or particle-in-cell models
- **Lasers**
 - Pulse duration: a few 10 fs \rightarrow ~ 200 fs
 - Pulse energy: a few 100 mJ to a few J
 - Intensity: from 10¹⁶ to 10²⁰ W/cm² \rightarrow E = 10⁹-10¹¹ V/cm
 - Contrast: 10⁶ to 10¹², at 1 ps, 10¹ to 10⁴ at 100 fs
 - Wavelength: $\lambda \sim 1 \ \mu m$

Test experiment at CELIA Université BORDEAUX July 2016

With G. Andrianaki, G. Boutoux (CELIA) & A. Soleihac (ILM, Lyon)

de BORDEAUX

université

Test experiment at CELIA July 2016

Magnetic spectrometer

- Reproducible signal
- Approx. the same energy range in both detectors
- Spectra seem different
- A few shots are needed to generate enough signal on the imaging plates
- Improvements of the detectors are needed for the protection against photons
- 1 MeV protons: local record at

- M. Barbui et al., Phys. Rev. Lett. 111, 082502 (2013)
- W. Bang et al., Phys. Rev. Lett. 111, 055002 (2013)

université

fs laser - nano-object interaction

- Possible evolutions of the field
 - Use of narrow size distributions of clusters vs log-normal for gas expansion
 - \rightarrow A more precise definition of the target
 - \rightarrow Nanodroplets
 - \rightarrow Nano-objects synthesised by chemistry
 - Shaping of the fs pulse \rightarrow Shock-wave into the cluster \rightarrow Trigger fusion reactions in higher density plasmas $\rho(\text{ions}) \sim 10^{21} - 10^{23} \text{ cm}^{-3}$

C 2 2

CELIA

université

de BORDEAUX

Example of an on-going programme on NIF

 $\mathbb{C}2\mathbb{Z}$

CELIA

- **NIF on-going experiment**
 - D.T. Casey et al., Phys. Rev. Lett. 108, 075002 (2012)
 - D.T. Casey et al., Phys. Rev. Lett. 109, 025003 (2012)
 - D.B. Sayre *et al.*, Phys. Rev. Lett. **111**, 052501 (2013)

Université BORDEAUX

NIF experiment indirect drive

VisRad Prism Corp

Cea

CELIA

université

Measurement of fusion reactions

$$N_{\rm fp}(E_{\rm D}) = \frac{\Delta\Omega}{4\pi} \int dt \ d^{3}\vec{r} \langle \sigma\nu\rangle(T(\vec{r},t)) \times \rho_{\rm A}(\vec{r},t)\rho_{\rm B}(\vec{r},t) \times \int dE_{\rm F}P(E_{\rm F},E_{\rm D},\vec{r},t)$$

$$\begin{array}{c} N_{\rm fp}({\rm E}_{\rm D}) \\ T(\overrightarrow{r},t) \\ \rho_{\rm A}(\overrightarrow{r},t), \ \rho_{\rm B}(\overrightarrow{r},t) \end{array} \rightarrow {\rm From \ plasma \ hydrodynamics \ calculations \\ \& \ additional \ diagnostics \ (Doppler, \ neutrons) \end{array}$$

 \rightarrow Experimentally, the method of reaction yield ratios is used to improve the accuracy on the determination of the reactivity

université

▶ High-energy laser facilities (will) permit exploring "inplasma" nuclear physics, from low to rather high ρ & k_BT

Conclusions

- Existing & being-built facilities provide a continuum of experiments from Hz repetition rate measurements to single – shot laser experiments
- Solution For nuclear astrophysics, $p+^{11}B$ reaction can be studied, in search for electron screening effects (as for $p+^8Be \rightarrow ^8B+v$)
- Experiments for astrophysics in close relationship with laser fusion physics for energy
- Experiments on fs lasers for astrophysics aim also at other physics goals such as negative ion sources...
- Is laser experiments as a program of their own but also as a test bench of diagnostics for large-scale facilities