Focus exp. :

Naines brunes et bandes moléculaires de FeH et CrH

Patrick Crozet Institut Lumière Matière

UMR 5306 Campus Lyon-Tech La Doua, Bât. Kastler, 10 rue Ada Byron, Villeurbanne.

PLAN

- 1. Présentation
- 2. Problématique
- 3. Etat de l'Art au labo
- 4. Projet en cours
- 5. Conclusion

équipe et thématiques

étoiles froides et MH

FeH et CrH.

spectromètre Vernier (CrH)

perspectives

1. Présentation / Equipe et thématique

Spectrométrie Moléculaire, Institut Lumière Matière

Amanda ROSS, Heather HARKER, Jérôme MORVILLE, Patrick CROZET Georgi DOBREV (doctorant), Cassandre MIRALLEI (M2 Lyon1), Ella WYLLIE (M2 U. Strathclyde/Lyon1).

2. Problématique / FeH & CrH in late-M and L dwarfs

2. Problématique / High Res. FeH in red dwarfs

3. Etat de l'Art au labo / FeH (S=3/2)

Zero field data

- FTS/King furnace : J<32, v' and v"= 0,1,2 : J.G. Phillips et al, ApJS, <u>65</u> (1975)721.
- <u>Bernath's Atlas</u>: line list of experimental and extrapolated to high J transitions from ab-initio calculations.
 M. Dulick et al, ApJ, <u>594</u>:651(2003) ; http://bernath.uwaterloo.ca/FeH

Magnetic response

- LMR /discharge : ground state X ⁴Δ, v"=0, J"<8 : Brown et al, JCP, <u>124</u>, 234309(2006)
- LIF / molecular beam *F-X*, J"=3.5 v'=1-0 :
- LIF /discharge *F-X*, J"<10 v'=1,0 :

Harrison et al. ApJ, <u>679</u>,854 (2008) Crozet et al, J. Mol. Spec, <u>303</u>, 46 (2014)

3. Etat de l'Art au labo / CrH (S=5/2)

3. Etat de l'Art au labo / Atlases : caveat ...

=> mesures directes nécessaires, même en champ nul, et même à bas J.

PNPS Workshop "Astrophysique de laboratoire" ENS Lyon, 15-16 novembre 2016

3. Etat de l'Art au labo / MH production : hollow cathode discharge

décharge : 250 V_{DC} , i=100 mA. pression : 0.5 - 2 torr : 5 10⁻⁵ mol/s

Drilled metal cathode

Copper loop anode

Source 'froide' $(T_{rot} = 400 \text{ K})$:

- fréquences des raies d'absorption précises
- splittings Zeeman résolus

=> gagner en sensibilité !

3. Etat de l'Art au labo / Measurement of FeH g₁ factors

PNPS Workshop "Astrophysique de laboratoire" ENS Lyon, 15-16 novembre 2016

3. Etat de l'Art au labo / New FeH laboratory Landé factors :

P. Crozet, G. Dobrev, C. Richard, A. J. Ross, J. Mol. Spectrosc., 303, 46 (2014)

<u>Electronic Landé factors</u> $g_J*J(J+1)/\Omega$

Fit data from B = 0.2-0.6 T, and examine results for two nominally ${}^{4}\Delta$ states

X : v=0 from LMR results of Brown, Evenson et al JCP, <u>124</u>, 234309 (2006)

F : Match for v=1, J=3.5 from molecular beam study (Harrison *et al.* ApJ <u>679</u> 854 (2008)
 Mismatch ~4% wrt sunspot-derived g-factors Harrison & Brown, ApJ, <u>686</u> 1426 (2008)

PNPS Workshop "Astrophysique de laboratoire" ENS Lyon, 15-16 novembre 2016

3. Etat de l'Art au labo / Does a 4% difference in g', really matter?

Previous Landé factors were deduced from molecular simulation of sunspot data, using Zeeman splittings of Ti lines to calibrate the local magnetic flux *B*.

uncertainty in sunspot magnetic flux B may explain previous overestimation of F state Landé factors.

3. Etat de l'Art au labo / Application to sunspots

P. Crozet, A. J. Ross, N. Alleq, A. López Ariste, C. Le Men and B. Gelly, Magnetic Fields throughout *Stellar Evolution*, Proc. IAU Symposium 302 (2013)164-165, I.A.U. 2014, P. Petit, M. Jardine & H. Spruit, eds.

4. Projet en cours/ Nouvelle approche instrumentale

PNPS Workshop "Astrophysique de laboratoire" ENS Lyon, 15-16 novembre 2016

4.Projet en cours/ Spectromètre Vernier

L. Rutkowski & J. Morville, Opt. Lett. 39 (23), 6664 (2014)

Avantages :

- fenêtre d'enregistrement : 20 THz (40 nm @780 nm)
- sensibilité : détection intracavité $L_{eq} \simeq 400$ m.
- résolution : $\mathcal{F}_{V} = \mathcal{F}_{C} = FSR_{C}/\Gamma_{C}$
- échantillonnage rapide : 100 spectres moyennés en 1s.

4/ Résultats préliminaires : CrH A ${}^{6}\Sigma^{+}$ -X ${}^{6}\Sigma^{+}$ (1-0)

4.Conclusion / perspectives

♦ Source MH en construction (financement PNPS 2016) :

- décharge / fente-source : longueur d'absorption **7**
- réglages micrométriques de la tête-cathode : signal optimal.

mécanique : J. MAURELLI, ILM

♦ Enregistrement des spectres d'absorption /Spectromètre Vernier

- **Objectifs :** Spectres d'absorption large bande de CrH 0-0 et 1-0 @B=0 et B<0.6 T à résolution Doppler (0.002 nm) → nouvelle cavité.
 - accès aux grands J (≃20.5), grâce à une sensibilité accrue (*).
 - mesure des réponses magnétiques σ^+ , σ^- , π .
- (*) Défis pour augmenter la sensibilité : élimination des franges (etalonning de cavité)
 - bande passante de l'asservissement (AOM shifter)
 - caractériser la fonction d'appareil du spectromètre.

5.Conclusion / Autre défis : simulations de CrH

Spectre du premier système positif de l'azote moléculaire:

Spectromètre Vernier : une nouvelle approche instrumentale

L. Rutkowski & J. Morville, Opt. Lett. 39 (23), 6664 (2014)

anode

gas jet

Using our parameters, we can determine the magnetic field for FeH in sunspots

FeH Landé factors give B = 0.22 Tesla for the Themis spectrum. Atomic lines give B = 0.25 T. Molecules are likely formed at higher altitudes.

PNPS Workshop "Astrophysique de laboratoire" ENS Lyon, 15-16 novembre 2016

Aim of this work = find g_J for many J in the F ⁴ Δ state.

LMR studies (Brown, Evenson & co-workers) established molecular Landé factors are close to Hund's case b) limit for the X $^{4}\Delta$ ground state. What about F $^{4}\Delta$?

From : S. V. Berdyugina and S. K. Solanki, A&A <u>385(2002)701</u>

We have now (thanks to ANR) a benchmark cw tunable laser

ANR LASSA (ILM/IRAP,2009-2011)

the experimental setup ...

Source à MH

FeH is formed at ~ 400 K, populating J<10.5 in $X^4\Delta_{7/2}$ and 8.5 in $^4\Delta_{5/2}$

Sputter source : Fe cathode, located above a permanent magnet.

i=350 mA , gas flow ~ 40 sccm (10% H_2 in argon), p = 1 torr

Magnetic field calibration from Ar* lines

Peak positions can give B in Tesla. PROFILES are important for variation in B.

Wing-Ford band of FeH: some results

PNPS Workshop "Astrophysique de laboratoire" ENS Lyon, 15-16 novembre 2016

FeH electronic structure from ab initio calculations Langhoff & Bauschlicher, J Mol Spectrosc. <u>141</u>, 243-257 (1990)

FeH absorption near 1µm (laboratory spectrum, Kitt Peak)

J.G. Phillips *et al*, ApJS, <u>65</u> (1975)721, then

M. Dulick et al, ApJ, <u>594</u>:651–663 (2003), with full linelist available http://bernath.uwaterloo.ca/FeH

We rely completely on this analysis, but we need improved wavenumber accuracy and resolution, to distinguish Zeeman splittings from Λ doubling

CrH electronic structure from ab initio calculations Langhoff & Bauschlicher, J Mol Spectrosc. <u>141</u>, 243-257 (1990)

FeH electronic structure from MRCI calculations Langhoff & Bauschlicher, J Mol Spectrosc. <u>141</u>, 243-257 (1990)

FeH electronic energy diagram D.F.Hullah et al, Mol. Phys., 97(1),93 (1999)

		Mult.	Rot.	Mag.	Hund's	Diatomics	with tro	ansitions in the optical & near I	R
	State	$\operatorname{split}^{(1)}$	$\operatorname{split}^{(1)}$	$\mathbf{field}^{(2)}$	case			Zeeman → PRF	
		(cm^{-1})	(cm^{-1})	(G)		- houd	avatore	··· / am ⁻¹	
							system	V ₀₀ / CIII	
TiO	$X^{3}\Delta$	96	2.2	4.7×10^4	a	α	C-X	19334.03, 19343.66, 19341.68	
	$A^{3}\Phi$	170	3.1	6.6×10^4	a	β	c-a	17840.6	
	$B^{3}\Pi$	16	1.0	2.1×10^4	$a-b^{(3)}$	Ŷ	A-X	14163.00, 14095.88, 14019.43	
	$C^{3}\Delta$	90	2.0	4.3×10^{4}	\mathbf{a}	γ'	B-X	16066.7, 16151.6, 16226.4	
	$a^{1}\Delta$	-	3.2	6.9×10^4	a	δ	b-a	11272.82	
	$b^{1}\Pi$	-	2.0	4.3×10^4	a	3	E-X	11871, 11886, 11899	
	$c^{1}\Phi$	-	4.2	9.0×10^4	a				
	o				_	~			
C_2	$a^{3}\Pi$	15.3	3.3	7.1×10^4	a–b	Swan	d-a	19400	
	$d^{3}\Pi$	16.9	3.5	7.5×10^{4}	a–b	Phillips	А-Х	8268.16	
OII	w ² m			0.0 1.05					
СН	X~11	27.9	57.6	$6.0 \times 10^{\circ}$	b	G	A-X	23200	
	$A^2\Delta$	2.0	89.4	4.3×10^4	b	0			
OII	v211	120		1.0 106	1				
OH	A^{-11}	139	00.7	1.2×10^{-100}	a-b	Meinel	$X(\Delta v)$	2243-18950	
	$A \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0.1	34.8	2100	D		A-X	32402.3	
CN	$v^2 \Sigma$	0.0090	9.0	77	1				
CN	$X^{-}\Sigma$	0.0036	3.8	77 F.C 105	b		DV	25707.84 (mager LUV)	
	A^{-11} $D^{2}\Sigma$	52.6	26.1	$5.0 \times 10^{\circ}$	a-b			(16570, 22760)	
	$B^{-}\Sigma$	0.0078	3.9	107	D		A-A	(10570-22700)	
M-II	$V^2\Sigma$	N	11 C	200	L				
MgH	$\Lambda \Delta$ $\Lambda^2 \Pi$	0.013	11.0 7 9	200 1.7×10^5	D		B-X	22081	
	$A \Pi$ $D^{\prime 2}\Sigma$	33.3 (4)	1.0	1.7×10 (4)	a–b		A-X	19278	
	$D \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	•••`	12.4	•••`	D				
$C_{2}H$	$X^2\Sigma$	0 022	8.6	470	b		DV	15754.0	
Uall	$\Lambda^2 \square$	70	12.0	$\frac{470}{2.8} \times 10^{5}$	u a_b		B-X	15/54.9	
	$B^2\Sigma$	0 0069	8.6	2.0 × 10 1/8	h		А-Х	14430.39	
		0.0003	0.0	140	0				
FeH	$^{4}\Delta$	191	19.5	4.1×10^{5}	a–b	Wing-Ford	d $F^4 \Delta - X^4 \Lambda$	9929, 10026, 10039, 9984	
-	${}^{4}\Delta$	214	17.5	3.7×10^{5}	a–b		$E^4\Pi$ - $A^4\Pi$	I, E-X : 5500-7500	

S. V. Berdyugina and S. K. Solanki, A&A <u>385</u>, 701-715 (2002)

Atomic lines are a bad choice ...

Stellar Spectral Classification System ("normal" oxygen-rich stars)

from P.W. Bernath

Luminosity (Size): I (Supergiant), II, III (Giant), IV, V (dwarf)