Ecoulements radiatifs

Chantal Stehlé LERMA, Observatoire de Paris, CNRS, UPMC

Workshop PNPS « astrophysique de laboratoire » 15-16 novembre 2016, ENS Lyon

RADIATIVE FLOWS

Radiation impacts the structure of the plasma

Usually in hot environments

Astrophysics

Laboratory (high energy density)

Credit S. Orlando (Obs. Palermo)

Credit J. Larour (LPP)

Credit LMJ @ CEA

Scaling ? (Castor 2006)

Boltzmann Numb	<u>er</u>	Radiation Flux dominated flow:
$Bo = \frac{Ei}{Ra}$	nthalpy Flux adiative Flux	Bo << 1
Optical depth	$\tau = \kappa \rho L$	Optically thin : $\tau \ll 1$ Optically thick : $\tau \gg 1$
Ontically thin	Cooling rate $C = A \pi r$	

(if LTE) (non LTE) (erg/cm ³ /s)	$\text{Cool} = \frac{\text{ut}_{\text{cool}}}{\text{L}} = \frac{1}{4} \frac{\text{Bo}}{\kappa_{\text{p}}\rho\text{L}}$
	(if LTE) (non LTE) (erg/cm ³ /s)

	L (cm)	N (cm ⁻³)	Т (К)	U (cm/s)	B _o	τ	Cool	Re	М
Stell. Atm.	10 ⁹	10 ¹⁵	104	10 ⁷	0.06	1	0.001	5 10 ¹²	10
Stell. wind	1012	1011	10 ⁵	10 ⁸	3 10 -6	0.01	3 10 -5	5 10 ¹⁰	40
Short pulse laser	0.001	10 ²⁴	10 ⁷	10 ⁸	0.3	0.01	5	10 ³	4

Castor : « the odds that a given astronomical environment can be simulated in the laboratory are not good. However, the odds that a given laboratory environment has an analogue in astronomy are much better. »

No SCALING FOR SPECTROSCOPY

2 approaches :

Approximate scaling

Accretion 1) on white dwarfs (Falize & al.)

2) on T-Tauri stars in the lab. *(Ciardi & al.)*, Effect of radiation cooling, instabilities, collimation by B. Study of physical processes in the presence of radiation & link to astrohysical situations

Radiative shocks : accretion on Young Stars, SN breakthrough ..; (Stehlé, Michaut, Larour)

Rad. mediated instabilities
1) Vishniak (*Michaut et al.*)
2) Rayleigh Taylor (*Hungtigton*))
of interest for SN explosion and
their link to SNR

4 piliers

Durant l'évolution stellaire

France : précurseur radiatif

LULI en 2000 (100J @ 3ω) Xe ~ 0.2 bar), **65 km/s** Analyse du **précurseur radiatif**

Fleury 2002, Bouquet 2004, + autres exp.

Désaccord entre simus 1D et expérience :

• Simus 2D : FCI2 et post traitement en transfert radiatif) (*Leygnac 2006*).

PALS 2005-2015 (100 J @ 3ω): 60 km/s

- Pertes radiatives aux bords du tube
- Régime quasi stationnaire

Simus 2D HERACLES (Gonzalez 2007, 2009)

• Estimation de l'albedo des parois

LULI, PALS

Accrétion protostellaire

- CTT (Matsakos et al. 2013)
 - -> 2D (Matsakos et al. 2013, PLUTO)
 - -> Couplage rad. (de Sa, Chieze, ASTROLAB)
- coeurs pré-stellaires (Commerçon et al 2011)

plus grandes vitesses,

USA : post choc

OMEGA

1) Etude du post choc par radiographie X : le front de choc reste très collé au piston -> collapse radiatif Simulations 1D (Hyades) et 2D (FCI2) *(Reighard et al 2006), Suzuki Vidal et al. à venir*

2) Effet du rayonnement sur les parois (Doss et al 2009)

Développement du centre CRASH pour simuler les chocs radiatifs (Van der Holst 2011, Fryxell et al 2012)

Radiographie éclair @ OMEGA

Laser multi kJ : OMEGA

LIL & GEKKO (curvature effect)

LIL (4-8 kJ at ω), 160 km/s Kr, Xe (50 mbar) (Michaut et al. ILP report 2015, Casner 2015)

GEKKO XII, 1 kJ at 3ω, 200 km/s Xe (50 mba *(Diziere 2011)*

The shock is curved

(also noted in earlier studies at LULI)

0 500 1000 1500 X (μm)

ORION (post shock & precursor)

1.6 kJ at 3ω , 80 km/s Kr, Xe (0.3 bar, Ar, Kr)

Post shock & precursors identified

Instabilities, radiative collapse

(Suzuki Vidal 2016)

Perspectives

Chocs isolés – approfondissement

- Explorer les régimes radiatifs (-> transition vers chocs optiquement minces et refroidis notamment -> jets stellaires par ex.)
- Mesure de T_e mais aussi T_i cad mieux résoudre le choc.
- Benchmark complet
- Signatures spectrales (et test codes)
- Instabilités + rayonnement (SN notamment)
- Effet de B.

Chocs et interactions

- Interaction de chocs (PALS, ORION)
- Chocs sur obstacle (LMJ à venir)

ORION's chamber

Forces et opportunités

Une dizaine de groupes (théorie et expérience) France : LULI, LERMA, CEA-DAM, CEA-AIM, LUTH, LPP... Etranger : Rochester, LLNL, PALS, GEKKO, Imperial College, IFN ... De nombreuses thèses expérimentales et numériques

- Filière cibles spécifiques (GEPI)
- Dévts numériques en cours *(transfer 3D, IRIS; HADES 2D)*
- Table top-experiment (LPP).
- Diagnostiques originaux (radio éclair à 21 nm)
- Besoin d'installations kJ
- Perspectives LIL/LMJ
- Confrontation observationnelles : *pour l'accrétion, ATHENA, SPIROU, ARAGO*

Cibles : GEPI, LERMA