Magnetic reconnection in astrophysical plasmas

R. SMETS[†], J. Fuchs^{*}, A. Grisollet[‡], A. Ciardi^o, R. Riquier[‡], A. Sladkov[†], S. Bolanos^{*}

[†]LPP, ^{*}LULI, [‡]CEA, [°]LERMA,

"Astrophysique de Laboratoire", le 15 Novembre 2016

Reconnection converts Mag. energy into Kin. energy

Sweet-Parker model needs resistivity : slow Petschek model : needs a fast shock

Fast Reconnection : Hall effect [GEM Challenge, 2001]

Ideal MHD : $\mathbf{E} = -\mathbf{v}_i \times \mathbf{B}$ p^+ Diff. region : $\mathbf{E} = (\mathbf{J} \times \mathbf{B})/en$ e^- Diff. region : $\mathbf{E} = -\nabla \cdot \mathbf{P}_e/en$

Planetary Magnetospheres [Dungey, 1961]

At day-side Magnetopause & in the Magnetotail $\beta \sim 1$, $L \rightarrow \infty$, non-relativistic ($T \sim 100 \text{ keV}$)

Solar prominence merging [Aulanier et al., ApJ 2005]

Cold dense tube in hot tenuous coronna, $\beta \sim 10^{-2}$ \longrightarrow 3D geometry very important,

Striped pulsar wind [Bogovalov, A&A 1999]

Ultra-relativistic pair-plasmas ($\gamma \sim 10^3$, $\sigma \sim 10^4$) (collisionless) Shock-driven reconnection

 \rightarrow EM energy to synchrotron emmitting electrons (X & γ)

Accretion disks [Gouveia dal Pino & Lazarian, 2005]

Can explain the steep power-law state of photons for $\beta \leq 1$

 \rightarrow Could be extended to AGNs & YSOs,

γ ray bursts (Fireball model) [Thompson, 1994]

Ultra-relativistic with $\beta \leq 10^{-4} \rightarrow f(\gamma) \propto \gamma^{-\delta}$ with $p \sim -2.2$

 \rightarrow Associated $\delta \sim -1.6$ for synchrotron photons

With high-intensity Lasers... [Nielson et al., 2006]

2 hotspots on solid target :

 \rightarrow 2 anti-parallel Magnetic loops (Biermann-Battery effect)

When folding targtets [Smets et al., 2014]

Initial out-of-plane magnetic field : Quadripolar structure

- \rightarrow Reconnection rate depends on sallient/revers angle
- \rightarrow 6 shots scheduled on LMJ/PETAL : end of 2017

About the Hall effects

- (Hall) E_{XY} electric field associated to J_Z and B_{XY}
- J_Z grows at the tip of each loops when colliding
- \rightarrow quadrupolar B_Z grows because E_{XY} is no more curl-free
- J_{XY} associated to this out-of-plane magnetic field
- \rightarrow Carried by electrons (protons are demagnetized)

Non-Coplanar Hybrid simulation : t=0

Non-Coplanar Hybrid simulation : t=16

Reconnected flux

 B_Z develops prior the reconnection onset (t=16) Same reconnection rate at each loci (slope of A_Z) Time lag between the 2 onsets of reconnection

LULI 2000 : 2 beams with 200 J & 4.0 ns each

 \rightarrow The 2 magnetic shells get compressed and get flat \rightarrow On the reconnection sheet, protons are weakly scattered

LULI 2000 : 2 beams with 200 J & 4.0 ns each

- \rightarrow No more flat sheet betweens the 2 shells
- \rightarrow Reconnection inhibited ?

LULI 2000 Exp. in 2017

If folding along the other direction : Initial Guide-field \rightarrow Supposed to slow-down the (symmetrical) reconnection

LMJ/PETAL shots end of 2017

- 800 kJ, 4 ns with 4 quads
- Increase magnetization & shorten reconnection process
- High Z target decreases the associated β value
- Proton radiography
- \rightarrow Get (integrated) E & B fields at different times
- DP1 X-ray imager : 12 images with resolution of 130 ps
- \rightarrow a sequence of 2D images
- DMX Spectrometer : X-rays spectra resolved in time
- \rightarrow measure the black-body spectrum of $T\sim$ 100 eV plasma